Устройство автомобилей

Устройство автомобилей

Скоростная характеристика двигателя определяется зависимостями эффективной мощности Ne и крутящего момента Mк от частоты вращения n коленчатого вала.

Ведущие колеса автомобиля приводят его в движение в результате возникновения силы тяги, которая возникает при приложении крутящего момента к полуосям ведущих колес со стороны трансмиссии:

где Pт – сила тяги, Н;
Mт – крутящий (тяговый) момент на ведущем колесе, Нм;
r – радиус колеса, м.

Крутящий момент на ведущих колесах зависит от величины момента, развиваемого двигателем на коленчатом валу, передаточного числа iтр трансмиссии и ее КПД – ηтр :

Сила тяги Pт на ведущих колесах может быть определена не только по формуле (1), но и с учетом скорости vi движения автомобиля на i -й передаче и развиваемой двигателем эффективной мощности Nе :

Скорость vi движения автомобиля на i -й передаче пропорциональна частоте n вращения коленчатого вала, радиусу r ведущего колеса и обратно пропорциональна передаточному числу iтр i трансмиссии на i -й передаче:

Таким образом, частота вращения n коленчатого вала является определяющим параметром для показателей эффективной мощности Nе , крутящего момента Mк и силы тяги на ведущих колесах Pт .

динамика автомобиля

На рисунке 1 приведена внешняя скоростная характеристика двигателя при полностью открытой дроссельной заслонке, которая определяет предельные возможности двигателя при значениях частоты вращения коленчатого вала от nmin до nmax .

Анализ графика показывает, что максимальная эффективная мощность и максимальный крутящий момент, развиваемый двигателем, доступен в узком интервале частот вращения коленчатого вала. При небольшой частоте вращения коленчатого вала величина этих динамических показателей недостаточна для появления на ведущих колесах требуемой для движения автомобиля силы тяги, а при превышении частотой вращения коленвала некоторого максимального порога двигатель начинает терять мощность и тяговые показатели, или, как говорят механики, начинает работать «вразнос».
По этой причине эффективная эксплуатация двигателя внутреннего сгорания возможна лишь в некотором узком диапазоне частот вращения коленчатого вала.

Скоростная характеристика двигателя во многом зависит от типа двигателя: чем круче кривая эффективной мощности Nе , тем большей приемистостью обладает двигатель.

Тяговая характеристика автомобиля

Тягово-скоростные свойства автомобиля удобно оценивать с помощью тяговой характеристики, т. е. зависимостью силы тяги на ведущих колесах от скорости движения на различных передачах (рис. 2).

Используя скоростную характеристику и задавая частоты вращения коленчатого вала от nmin до nmax при соответствующих значениях эффективной мощности или крутящего момента для каждой передачи по формуле (4) находят значения скорости v , а по формуле (3) находят значение тяговой силы Pт .

Число кривых на тяговой характеристике (рис. 2) соответствует числу ступеней в коробке передач.

Тяговая характеристика позволяет быстро определить максимальное значение силы тяги на ведущих колесах, которая может быть обеспечена при данной скорости движения автомобиля, поскольку она рассчитывается по наибольшей для данной частоты вращения коленчатого вала мощности двигателя. Меньшее значение силы тяги получается при недоиспользовании мощности двигателя, т. е. при неполной подаче топлива. Следовательно, с помощью тяговой характеристики можно оценить предельные тяговые возможности автомобиля в фактическом интервале скоростей его движения.

Силы и моменты, действующие на ведущие колеса

На ведущие колеса автомобиля действуют силы со стороны автомобиля (т. е. со стороны двигателя посредством агрегатов трансмиссии), а также силы со стороны дороги. Обозначим силы, действующие со стороны автомобиля, буквой Р , а со стороны дороги – буквой R (рис. 3).

Реактивные силы, действующие на колеса

Тяговый момент Мт на ведущих колесах стремится сдвинуть назад верхний слой дорожного покрытия, в результате чего со стороны дороги на ведущее колесо в зоне контакта действует противоположно направленная сила Rx – горизонтально направленная касательная реакция дороги.

сила тяги на ведущих колесах

Так как на автомобиле используются эластичные пневматические шины, то неизбежна частичная потеря момента Мт , поэтому продольную (горизонтальную) реакцию со стороны дороги, обеспечивающую качение колеса, можно записать как разность между силой тяги и потерями в шине:

где Рш – сила, учитывающая потери энергии в шинах ведущих колес.

Таким образом, касательная реакция дороги создает силу тяги.

Автомобиль своим весом G действует на каждое колесо, передавая усилие на дорогу, и, соответственно, вызывая нормальную реакцию дороги Rz . Следует учитывать, что при наличии на колесе крутящего момента нормальная реакция Rz прикладывается не к оси симметрии опорной площадки колеса, а на некотором расстоянии αш от нее, поскольку имеет место смещение центра давления из-за эластичности шины.

Эпюра элементарных нормальных реакций дороги, показанная на рисунке 4, объясняет причину смещения точки приложения реакции Rz . Это происходит из-за того, что нормальные реакции на переднем и заднем участках опорной площадки колеса различны по величине, так как силы, возникающие в упругом материале шины при приложении и снятии нагрузки неодинаковы.
Это объясняется действием сил внутреннего трения между взаимно перемещающимися частицами материала шины. При приложении нагрузки эти силы и силы упругости направлены в одну и ту же сторону, а при снятии – в противоположные стороны.

Боковая сила Рy значительно увеличивается при криволинейном движении автомобиля или при движении по косогору. Боковая реакция Ry со стороны дороги удерживает колеса автомобиля от бокового скольжения (заноса) при движении автомобиля поперек косогора или при выполнении маневра.

Сила тяги на ведущих колесах

Сила тяги Рт на ведущих колесах может быть определена, как отношение крутящего (тягового) момента Mт , подводимого к колесам, к их радиусу r :

При этом не учитываются затраты энергии на деформацию дорожного покрытия, трение внутри шины и силы инерции, обусловленные ускорением вращающихся масс колес и деталей трансмиссии в случае неравномерного движения.

силы, действующие на колеса автомобиля

Следует учитывать, что радиус колеса вследствие эластичности шины является переменной величиной.
Различают следующие радиусы автомобильных колес:

  • статический радиус колеса rст – расстояние от поверхности дороги до оси неподвижного колеса, воспринимающего вертикальную нагрузку, обусловленную силой тяжести, действующей на автомобиль (т. е. его весом G ). Значения статического радиуса приводятся заводом-изготовителем шины в технических характеристиках;
  • динамический радиус колеса rд – расстояние от поверхности дороги до оси катящегося колеса. Динамический радиус колеса во время движения может превышать его статический радиус, поскольку в результате нагрева шины давление внутри нее увеличивается.
    Кроме того, под действием центробежных сил с возрастанием скорости автомобиля шина растягивается в радиальном направлении, вследствие чего динамический радиус увеличивается. Динамический радиус, также, зависит от величины вертикальной нагрузки Pz .
  • радиус качения колеса rк – радиус условного недеформирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.

Радиус качения колеса определяется по формуле:

где S – путь, пройденный колесом; nк – число оборотов колеса на пути S .

Читать статью  Мойка двигателя автомобиля: зачем нужна

Если проскальзывание колеса относительно дороги отсутствует, что характерно для ведомого колеса, то радиусы rд и rк почти равны между собой. В случае полного буксования колеса его пройденный путь будет равен нулю, и тогда (согласно приведенной выше формуле) его радиус качения тоже будет равен нулю.
В случае движения колеса юзом (скольжение без вращения) число оборотов будет равно нулю, и, соответственно, радиус качения rк будет стремиться к бесконечности.

Различают еще и свободный радиус колеса rсв , который является половиной диаметра ненагруженного колеса при отсутствии его контакта с опорной поверхностью.

На дорогах с сухим покрытием скольжение ведущих колес и изменение радиуса незначительны. Поэтому радиусы статический rст , динамический rд и качения rк при расчетах считаются одинаковыми и обозначаются буквой r .

Силы действующие на автомобиль при движении

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Силы действующие на автомобиль при движении

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Развиваемый двигателем автомобиля крутящий момент передается на ведущие колеса. В передаче крутящего момента от двигателя к ведущим колесам участвуют механизмы трансмиссии. Крутящий момент на ведущих колесах зависит от крутящего момента двигателя и передаточных чисел коробки передач и главной передачи. В точке касания колес с поверхностью дороги крутящий момент вызывает окружную силу. Противодействие дороги этой окружной силе выражается реактивной силой, передаваемой от дороги на ведущее колесо. Эта сила направлена в сторону движения автомобиля и называется толкающей или тяговой силой. Тяговая сила от колес передается на ведущий мост и далее на раму, заставляя автомобиль двигаться. Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Тяговая сила на ведущих колесах дости­гает наибольшей величины при движении автомобиля на низшей передаче, поэтому низшую передачу используют при трогании с места автомобиля с грузом, при движении автомобиля по бездорожью. Величина тяговой силы на ведущих колесах автомобиля ограничивается сцеплением шин с поверхностью дороги.

Сила сцепления колес с дорогой

Трение, возника­ющее между ведущими колесами автомобиля и дорогой, называется силой сцепления. Сила сцепления равна произведению коэф­фициента сцепления на сцепной вес, т. е. вес, приходящийся на ведущие колеса автомобиля. Величина коэффициента сцепления шин с дорогой зависит от качества и состояния дорожного покрытия, формы и состояния рисунка протектора шины, давления воздуха в шине.

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

При движении автомобиль преодолевает сопротивление воздуха, которое складывается из нескольких сопротивлений:

  • лобового сопротивле­ния (около 55—60% всего сопротивления воздуха)
  • создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
  • возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

На каждое колесо ав­томобиля постоянно действует вертикальная нагрузка, которая вызывает вертикальную реакцию дороги. При движении автомобиля на него действует сила сопротивления качению, которая возникает вследствие деформации шин и дороги и трения шин о дорогу.

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

  • для асфальтобетонного покрытия— 0,014—0,020
  • для гравийного покрытия—0,02—0,025
  • для песка—0,1—0,3

Сила сопротивления подъему

Автомобильная дорога состоит из чередующихся между собой подъемов и спусков и редко имеет горизонтальные участки большой длины.

Читать статью  Как правильно рассчитать нормы расхода топлива по приказу Минтранса

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.

Сила сопротивления разгону

Часть тяговой силы при разгоне затрачивается на ускорение вращающихся масс, главным образом маховика коленчатого вала двигателя и колес автомобиля. Для того чтобы автомобиль начал двигаться с определенной скоростью, ему необходимо преодолеть силу сопротивления разгону, равную произведению массы автомобиля на ускорение. При разгоне автомобиля сила сопротивления разгону направлена в сторону, об­ратную движению. При торможении автомобиля и замедлении его движения эта сила направлена в сторону движения автомобиля. Бывают случаи, когда при резком разгоне груз или пассажиры падают из открытого кузова, с сидений мотоцикла, а при резком торможении пассажиры ударяются о лобовое стекло или о перед­ний борт автомобиля. Для того чтобы таких случаев не было, необходимо, плавно увеличивая частоту вращения коленчатого вала двигателя, преодолевать силу сопротивления разгону и плавно осу­ществлять торможение автомобиля.

Центр тяжести

На автомобиль, как и на любое другое тело, действует сила тяжести, направленная вертикально вниз. Центром тяжести автомобиля называют такую точку автомобиля, от которой вес автомобиля распределяется равномерно во всех направлениях. У автомобиля центр тяжести располагается между передней и задней осью на высоте около 0,6 м для легковых и 0,7—1,0 м для гру­зовых. Чем ниже расположен центр тяжести, тем устойчивее авто­мобиль против опрокидывания. При загрузке автомобиля грузом центр тяжести поднимается у легковых автомобилей примерно на 0,3—0,4 м, а у грузовых на 0,5 м и более в зависимости от рода груза. При неравномерном укладывании груза центр тяжести может также сместиться вперед, назад или в сторону, при этом будут нарушаться устойчивость автомобиля и легкость управления.

Лекция 7. Уравнение движения автомобиля

7. 1 Силы сопротивления движению и мощности, затрачиваемые на их преодоление

Силами сопротивления называются силы, препятствующие Движению автомобиля. Эти силы направлены против его движе­ния.

При движении на подъеме, характеризуемом высотой Нп, длиной проекции Вп на гори­зонтальную плоскость и углом подъема дороги а, на автомобиль действуют следующие силы со­противления (рис. 7.1): сила со­противления качению Рк, равная сумме сил сопротивления каче­нию передних К1) и задних К2) колес, сила сопротивления подъе­му Рп, сила сопротивления воз­духа Рв и сила сопротивления раз­гону Ри. Силы сопротивления ка­чению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги Рд.

Рис. 7.1. Силы сопротивления движению автомобиля

Сила сопротивления качению

Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на де­формируемых дорогах).

Рекомендуемые материалы

О потерях энергии на внутреннее трение в шине можно судить по рис. 7.2, на котором приведена зависимость между вертикаль­ной нагрузкой на колесо и деформацией шины — ее прогибом fш.

При движении колеса по неровной поверхности шина, испы­тывая действие переменной нагрузки, деформируется. Линия Оа, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, ха­рактеризует потери энергии на внутреннее трение между отдель­ными частями шины (протектор, каркас, слои корда и др.).

Потери энергии на трение в шине называются гистерезисом, а линия ОаО — петлей гистерезиса.

Потери на трение в шине необратимы, так как при деформа­ции она нагревается и из нее выделяется теплота, которая рассе­ивается в окружающую среду. Энергия, затрачиваемая на дефор­мацию шины, не возвращается полностью при последующем вос­становлении ее формы.

Сила сопротивления качению Рк достигает наибольшего зна­чения при движении по горизонтальной дороге. В этом случае

Рк =fG, где G — вес автомобиля, Н; f — коэффициент сопротивления качению.

Рис. 7.2. Потери энергии на внутреннее трение в шине:

а — точка, соответствующая мак­симальным значениям нагрузки и прогиба шины

Рис. 7.3. Зависимости силы сопротив­ления качению Рк и мощности NK, не­обходимой для преодоления этого со­противления, от скорости автомобиля

При движении на подъеме и спуске сила сопротивления каче­нию уменьшается по сравнению с Рк на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению

где а — угол подъема, °.

Зная силу сопротивления качению, можно определить мощ­ность, кВт, затрачиваемую на преодоление этого сопротивления:

где v скорость автомобиля, м/с. Для горизонтальной дороги cos 0° = 1 и

Зависимости силы сопротивления качению Рк и мощности NK от скорости автомобиля v показаны на рис. 7.3.

Коэффициент сопротивления качению

Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных факторов и определяется экспериментально. Его средние значения для различных дорог при Нормальном давлении воздуха в шине составляют 0,01 . 0,1.

Рис 7.4. Зависимости коэффициента сопротивления качению от

скорости движения (а), давления воздуха в шине (б) и момента,

передаваемого через колесо (в)

Рассмотрим влияние различных факторов на коэффициент со­противления качению.

Скорость движения. При изменении скорости движения в ин­тервале 0. 50 км/ч коэффициент сопротивления качению изме­няется незначительно и его можно считать постоянным в указан­ном диапазоне скоростей.

При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно уве­личивается (рис. 7.4, а) вследствие возрастания потерь энергии в шине на трение.

Коэффициент сопротивления качению в зависимости от ско­рости движения можно приближенно рассчитать по формуле

где v скорость автомобиля, км/ч.

Тип и состояние покрытия дороги. На дорогах с твердым по­крытием сопротивление качению обусловлено главным образом деформациями шины.

При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.

На деформируемых дорогах коэффициент сопротивления ка­чению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образую­щейся колеи и состояния грунта.

Значения коэффициента сопротивления качению при рекомен­дуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:

Асфальто- и цементобетонное шоссе:

в хорошем состоянии. 0,007. 0,015

в удовлетворительном состоянии. 0,015. 0,02

Гравийная дорога в хорошем состоянии. 0,02. 0,025

Булыжная дорога в хорошем состоянии. 0,025. 0,03

Грунтовая дорога сухая, укатанная. 0,025. 0,03

Обледенелая дорога, лед. 0,015. 0,03

Укатанная снежная дорога. 0,03. 0,05

Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьше­ние числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.

Читать статью  Как запустить автомобиль с механической коробкой передач?

Давление воздуха в шине. На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопро­тивления качению повышается (рис. 7.4, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глу­бина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивле­ния качению имеет минимальное значение.

Нагрузка на колесо. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно — на до­рогах с твердым покрытием.

Момент, передаваемый через колесо. При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 7.4, в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10. 15 % больше, чем для ведомых.

Коэффициент сопротивления качению оказывает существен­ное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже не­большое уменьшение этого коэффициента обеспечивает ощути­мую экономию топлива. Поэтому неслучайно стремление конст­рукторов и исследователей создать такие шины, при использова­нии которых коэффициент сопротивления качению будет незна­чительным, но это весьма сложная проблема.

Сила сопротивления подъему

Вес автомобиля, который движется на подъеме, можно разло­жить на две составляющие (см. рис. 7.1): параллельную и перпен­дикулярную поверхности дороги. Составляющая силы тяжести, параллельная поверхности дороги, представляет собой силу со­противления подъему, Н:

где G вес автомобиля, Н; a — угол подъема, °.

Рис. 7.5. Зависимости силы сопро­тивления подъему Рп и мощности Nп, необходимой для его преодоле­ния, от скорости автомобиля

В качестве характеристики кру­тизны подъема наряду с углом α используют величину i, называе­мую уклоном и равную i = H/Bn, где Нп высота подъема; Bn — длина его проекции на горизон­тальную плоскость. Сила сопротивления подъему может быть направлена как в сто­рону движения, так и против него. В процессе подъема она дей­ствует в направлении, противоположном движению, и является силой сопротивления движению. При спуске эта сила, направлен­ная в сторону движения, становится движущей.

Зная силу сопротивления подъему, можно определить мощ­ность, кВт, необходимую для преодоления этого сопротивления:

где v — скорость автомобиля, м/с.

Зависимости силы сопротивления подъему Рп и мощности Nn, необходимой для преодоления этого сопротивления, от скорости автомобиля v приведены на рис. 7.5.

Сила сопротивления дороги

Сила сопротивления дороги представляет собой сумму сил со­противления качению и сопротивления подъему:

Выражение в скобках, характеризующее дорогу в общем слу­чае, называется коэффициентом сопротивления дороги:

При малых углах подъема (не превышающих 5°), характерных для большинства автомобильных дорог с твердым покрытием, ко­эффициент сопротивления дороги

Сила сопротивления дороги в этом случае

Зная силу сопротивления доро­ги, можно определить мощность, кВт, необходимую для его преодо­ления:

где скорость автомобиля v выражена в м/с, вес G — в Н, мощ­ность NД в кВт.

Зависимости силы сопротивления дороги Рв и мощности NД, затрачиваемой на его преодоление, от скорости автомобиля v представлены на рис. 7.6.

Сила сопротивления воздуха

При движении действие силы сопротивления воздуха обуслов­лено перемещением частиц воздуха и их трением о поверхность автомобиля. Если он движется при отсутствии ветра, то сила со­противления воздуха, Н:

тогда как при наличии ветра

где kв — коэффициент сопротивления воздуха (коэффициент об­текаемости), Н-с 2 /м 4 ; Fa — лобовая площадь автомобиля, м 2 ; v скорость автомобиля, м/с; vB — скорость ветра, м/с (знак «+» со­ответствует встречному ветру, знак «-» — попутному).

Коэффициент сопротивления воздуха, зависящий от формы и качества поверхности автомобиля, определяется эксперимен­тально при продувке в аэродинамической трубе.

Рис. 7.7. Площади лобового сопротивления легкового (а) и грузового

Коэффициент сопротивления воздуха, Н-с 2 /м 4 , составляет 0,2. 0,35 для легковых автомобилей, 0,35. 0,4 — для автобусов и 0,6. 0,7 — для грузовых автомобилей. При наличии прицепов со­противление воздуха увеличивается, так как возрастает наружная поверхность трения и возникают завихрения воздуха между тягачом и прицепами. При этом каждый прицеп вызывает увеличение коэффициента kв в среднем на 15. 25 %.

Лобовая площадь автомобиля зависит от его типа (рис. 7.7). Ее приближенное значение, м 2 , можно вычислить по следующим фор­мулам:

FA = ВНа — для грузовых автомобилей и автобусов;

Fa = 0,78ВаНа — для легковых автомобилей,

где В — колея колес автомобиля, м; На наибольшая высота автомобиля, м; Bа — наибольшая ширина автомобиля, м.

Мощность, кВт, затрачиваемая на преодоление сопротивле­ния воздуха:

— при отсутствии ветра;

— при наличии ветра.

Зависимости силы сопротивления воздуха Рв и мощности NB, необхо­димой для преодоления этого сопро­тивления, от скорости автомобиля v приведены на рис. 7.8.

Рис. 7.8. Зависимости силы сопротивле­ния воздуха Рв и мощности Nb, необхо­димой для преодоления этого сопротив­ления, от скорости автомобиля

Сила сопротивления разгону

Сила сопротивления разгону воз­никает вследствие затрат энергии на раскручивание вращающихся частей двигателя и трансмиссии, а также колес при движении автомобиля с ускорением.

Сила сопротивления разгону, Н:

=

где G — вес автомобиля, Н; g — ус­корение силы тяжести, м/с 2 ; вр — коэффициент учета вращающихся масс автомобиля; j — ускорение ав­томобиля, м/с 2 .

Мощность, кВт, затрачиваемая на разгон:

Зависимости силы сопротивления разгону Ри и мощности NK, необходимой для преодоления этого сопротивления, от скорости автомобиля v представлены на рис. 7.9.

Рис. 7.9. Зависимости силы сопротивления разгону Ря и мощности /Уи, необходимой для преодоления этого сопро­тивления, от скорости авто­мобиля

Коэффициент учета вращающихся масс

Этот коэффициент учитывает дополнительное сопротивление разгону автомобиля, вызванное раскручиванием вращающихся ча­стей двигателя, трансмиссии и колес.

Коэффициент учета вращающихся масс показывает, во сколь­ко раз мощность, затрачиваемая на разгон автомобиля, больше мощности, необходимой для установившегося движения:

где JM момент инерции маховика; uТ, Чтр — передаточное число и КПД трансмиссии; Jсум — суммарный момент инерции всех ко­лес автомобиля.

Коэффициент учета вращающихся масс для автомобиля с пол­ной нагрузкой можно приближенно рассчитать по формуле

где ик, ид — передаточные числа основной и дополнительной ко­робок передач.

7.2. Уравнение движения автомобиля

Для вывода уравнения движения рассмотрим разгон автомоби­ля на подъеме (рис. 7.10).

Спроецируем все силы, действующие на автомобиль, на по­верхность дороги:

(7.1)

Подставим в формулу (7.1) касательные реакции дороги RX1 и RX2, объединим члены с коэффициентом сопротивления каче­нию f и члены с ускорением j и, принимая во внимание соотно­шения f(RZl + RZ2)- Pk и /*, + Л2 = Jк , а также коэффициент уче­та вращающихся масс, получим уравнение движения автомобиля в общем виде:

или

(7.2)

Уравнение движения автомобиля выражает связь между дви­жущими силами и силами сопротивления движению. Оно позво­ляет определить режим движения автомобиля в любой момент.

Так, например, при установившемся (равномерном) движе­нии

Из уравнения (7.2) следует, что безостановочное движение автомобиля возможно только при условии

Ещё посмотрите лекцию «18 Дизайн молекул лекарств» по этой теме.

Рис. 7.10. Схема сил, действую­щих на автомобиль на подъеме

данное неравенство связыва­ет конструктивные параметры ав­томобиля с эксплуатационными факторами, обусловливающими сопротивление движению. Одна­ко оно не гарантирует отсутствия буксования ведущих колес. Безо­становочное движение автомоби­ля без буксования ведущих колес возможно лишь при соблюдении условия

Рсц РТ РД + РВ.

Условие равномерного движения при отсутствии буксования ведущих колес записывается в виде

Рсц РТ = РД + РВ

Источник http://k-a-t.ru/PM.01_mdk.01.01/7_teoria_avto_3/index.shtml

Источник https://ustroistvo-avtomobilya.ru/teoriya/sily-dejstvuyushhie-na-avtomobil-pri-dvizhenii/

Источник https://studizba.com/lectures/inzhenerija/avtomobili/35556-uravnenie-dvizhenija-avtomobilja.html

Понравилась статья? Поделиться с друзьями: