Двигатели для электромобиля: как устроены и принцип их работы

Двигатели для электромобиля: как устроены и принцип их работы

С каждым днём электромобили приобретают всё большую популярность у автолюбителей, а рынок электрокаров непрерывно растёт. Крупнейшие автопроизводители могут предложить марки и модели электромобилей на любой вкус и бюджет. Гибридные, плагин-гибридные, чистые электромобили — всех объединяет наличие электрического двигателя. Об устройстве данного механизма и принципе его действия и пойдёт речь в статье.

  • Как устроен электромобиль
    • Видео: как работает электромобиль?
    • Видео: принцип работы асинхронного тягового двигателя
    • Двигатели постоянного тока
      • Видео: устройство и принцип работы двигателя постоянного тока
      • Синхронный двигатель
      • Асинхронный двигатель
      • Видео: принцип работы асинхронного электродвигателя

      Как устроен электромобиль

      Невооружённым взглядом отличить электрокар от привычного автомобиля практически невозможно: колёса, кузов, шасси, мотор и различное электрооборудование (подогрев, свет и другие элементы, зависит от конструкции). Основное отличие — «сердце» электромобиля работает за счёт электрического тока, а в кузове находится отсек для аккумуляторной батареи.

      Двигатели для электромобиля: как устроены и принцип их работы

      На приборной панели электрокара отображается скорость, уровень заряда аккумулятора и число оборотов двигателя в минуту. Коробка передач как таковая отсутствует, ведь скорость движения регулируется нажатием педали газа.

      Знаете ли вы? Первый электромобиль был создан в 1841 году и выглядел как тележка с электромотором.

      Мотор электромобиля кардинально отличается от двигателя внутреннего сгорания. В нём нет камер сгорания, коленчатого вала и поршней. Электромотор состоит из неподвижного статора, по которому пропускается ток, и ротора. Ротор представляет собой набор электропроводящих стержней.

      Двигатели для электромобиля: как устроены и принцип их работы

      Трансмиссия в электромобиле представлена двумя элементами: односкоростной коробкой передач, которая передаёт производимую двигателем мощность на ведущие колёса, и простым дифференциалом. Единственное назначение коробки передач в электромобиле — это снижение скорости вращения и связанное с этим увеличение крутящего момента. В некоторых моделях электромобилей коробка передач отсутствует, её функции выполняет понижающий редуктор. Переход к задней передаче осуществляется благодаря изменению чередования фаз в двигателе.

      Двигатели для электромобиля: как устроены и принцип их работы

      Аккумуляторная батарея представляет собой набор литий-ионных элементов, объединённых в блоки, которые соединены параллельно, чтобы обеспечить необходимую для запуска электромобиля мощность. Использование гликолевого хладагента, который проходит по металлическим трубкам через зазоры между элементами аккумулятора, позволяет равномерно распределить температуру и избежать точек перегрева. Нагретый гликоль охлаждается через радиатор, установленный в передней части двигателя.

      Двигатели для электромобиля: как устроены и принцип их работы

      Электронная система управления электрокаром используется для распределения высокого напряжения, контроля расхода электроэнергии и исправности тормозной системы. Важным элементом системы является контроллер, который передаёт необходимое количество тока от батареи к мотору. Ещё одной важной деталью электромобиля является инвертор, который преобразует постоянный ток, вырабатываемый аккумулятором, в переменный. Инвертор также регулирует частоту переменного тока, следовательно, и скорость движка.

      Электрический автомобиль имеет множество преимуществ перед авто с двигателем внутреннего сгорания:

      • экологичность, т. к. при работе электродвигателя выброс вредных веществ в атмосферу существенно снижается;
      • экономия на заправке — стоимость электричества значительно ниже, чем стоимость автомобильного топлива;
      • мотор работает гораздо тише, что делает езду в авто более комфортной;
      • экономия на сервисном обслуживании, т. к. электромобиль имеет меньшее количество подвижных деталей, требующих ремонта или замены;
      • безопасность, что объясняется наличием электронной системы управления.

      Важно! Выбирайте электромобиль, модель которого выпущена не менее двух лет назад. За этот период недостатки данного модельного ряда успеют проявиться.

      Среди недостатков данного вида транспорта можно выделить как высокую стоимость и относительно небольшой модельный ряд в настоящее время, так и ограниченность сети заправочных станций. К тому же, электромобиль нуждается в частой и длительной подзарядке, что может быть проблемно при путешествиях на большие расстояния.

      Безусловно, электромобиль признают транспортом будущего, компании-производители постоянно совершенствуют технические характеристики электрокаров, а сервис становится более доступным.

      Видео: как работает электромобиль?

      Тяговый двигатель и принцип его работы

      Такие приспособления активно используются на электропоездах, троллейбусах, трамваях и автомобилях с электроприводом. Данный агрегат представляет собой механизм, преобразующий электрическую энергию в механическую, что, в свою очередь, приводит машину в движение. Также тяговый двигатель может выступать в роли генератора, преобразовывая энергию уже движущихся колёс обратно в электрическую.

      Знаете ли вы? Первый автомобиль в космосеэлектрический! В 2018 году компанией SpaceX была запущена ракета-носитель Falcon, на борту которой находился электромобиль Tesla Roadster с манекеном за рулём и копией романа Адамса Дугласа «Автостопом по галактике» в бардачке.

      Моторы электромобилей работают по такому же принципу. Говоря точнее, работа электродвигателя основана на принципе электромагнитной индукции: электрический ток подаётся на статор, проходя по обмоткам, он создаёт вращающееся магнитное поле, что индуцирует ток в стержнях ротора и заставляет его вращаться.

      Видео: принцип работы асинхронного тягового двигателя

      Отличия по типу тока

      Существует несколько разновидностей электродвигателей: они могут питаться от постоянного, пульсирующего или переменного тока. Во всех случаях их работа основана на явлении электромагнитной индукции. Отличие состоит в конструкции таких механизмов и способе питания привода.

      Двигатели постоянного тока

      Во всех электродвигателях такого типа присутствуют якорь (вращающийся элемент) и индуктор (неподвижная часть), которые разделены воздушным пространством. Индуктор состоит из станины, которая является элементом магнитной цепи, а также главных и добавочных полюсов.

      На них располагаются обмотки, необходимые для создания магнитного поля устройства. Индуктор двигателя постоянного тока создаёт неподвижное магнитное поле. Якорь состоит из магнитной системы и коллектора, где с помощью щёток образуется электрический ток.

      Двигатели для электромобиля: как устроены и принцип их работы

      Коллекторный электродвигатель имеет свои недостатки:

      • повышенный уровень шума при работе;
      • необходимость замены деталей (трущиеся щётки и коллектор);
      • помехи из-за искрения щёток и переключения обмоток якоря.

      Электродвигатель постоянного тока имеет более высокий коэффициент полезного действия, а также имеет возможность более точно регулировать обороты, что отражается на стоимости такого устройства.

      Видео: устройство и принцип работы двигателя постоянного тока

      Двигатели пульсирующего тока

      Такие электромоторы по своей конструкции схожи с двигателями постоянного тока. Различие между ними в том, что данный тип мотора имеет в своей конструкции дополнительную компенсационную обмотку и шихтованные полюса. Применяются двигатели пульсирующего тока в электровозах, где питаются выпрямленным переменным током.

      Рекомендуем для прочтения:

      • Крутящий момент двигателя: что дает, какой должен быть и как повысить
      • Принцип работы роторного двигателя внутреннего сгорания
      • Атмосферный двигатель: принцип работы, плюсы и минусы
      • MPI двигатель — что это такое?

      Двигатели переменного тока

      Электрические моторы такого вида могут питаться одно-, двух- или трёхфазным током. Трехфазные, в свою очередь, делятся на синхронные и асинхронные.

      Двигатели для электромобиля: как устроены и принцип их работы

      Внешне они практически идентичны, статоры имеют одинаковую конструкцию и выполняют одну и ту же функцию — создают вращающееся магнитное поле. Отличие состоит в работе роторов. Несомненным преимуществом двигателей переменного тока является рекуперация, т. е. способность генерировать энергию в процессе торможения электромобиля и сохранение её в аккумуляторе.

      Важно! Оптимальная температура для электромобиля составляет +21°С. Резкое потепление или похолодание негативно скажется на работе батареи: использование печки или кондиционера может сократить заряд аккумулятора.

      В агрегатах такого типа ротор и магнитное поле статора движутся с одинаковой скоростью. Синхронные двигатели мощностью в сотни киловатт имеют на роторе дополнительные обмотки возбуждения. В электродвигателях меньшей мощности полюса образуются постоянными магнитами. Подобные устройства используют там, где необходима постоянная частота вращения, независимо от нагрузки. Такие моторы способны генерировать реактивную мощность.

      Двигатели для электромобиля: как устроены и принцип их работы

      В большинстве современных электромобилей используется асинхронный, или индукционный двигатель. Отличием такого электромотора является то, что скорость вращения ротора в нём меньше скорости вращения электромагнитного поля.

      Скорость такого мотора зависит от частоты переменного тока, т. е. изменив частоту тока, можно изменить скорость вращения ведущих колёс, что позволяет легко контролировать скорость электромобиля. Скорость вращения электродвигателя может составить от 0 до 18 000 оборотов в минуту.

      Видео: принцип работы асинхронного электродвигателя

      Самые популярные электродвигатели

      Каждый вид электромоторов имеет свои особенности и области применения. В бытовой технике наиболее распространены коллекторные двигатели (стиральная машина, пылесос, дрель). В промышленности большой популярностью пользуются асинхронные электродвигатели из-за надёжности, неприхотливости в обслуживании и невысокой стоимости.

      Двигатели для электромобиля: как устроены и принцип их работы

      Асинхронный двигатель в быту можно встретить в холодильнике, электрическом насосе и вытяжном вентиляторе. Синхронные двигатели с постоянными магнитами также встречаются довольно часто: в вентиляторе кулера, авиастроении, стиральных машинах с прямым приводом, сегвеях. В электромобилях чаще всего встречаются асинхронные двигатели с короткозамкнутым ротором, что обосновывается их компактностью, долговечностью, высокой производительностью и простотой использования.

      Таким образом, автомобили с электромоторами стали достойной альтернативой авто с ДВС. Среди преимуществ электродвигателя — больше скорости и динамики, больше крутящего момента, меньше финансовых затрат и отравляющих выхлопов. С каждой новой моделью все системы электромобиля улучшаются, повышается безопасность и комфортность передвижения.

      Электромобиль своими руками: как, зачем и сколько это стоит

      Двигатели для электромобиля: как устроены и принцип их работы

      Сегодня электротранспорт подается маркетологами, как носитель самых прогрессивных технологий в автомобилестроении. И многие уверены, что электромобиль может быть либо дорогим, как Nissan Leaf или Mitsubishi i-MiEV, либо очень дорогим – как Tesla. Однако члены дружного сообщества электромобилистов-самодельщиков знают, что это не так! В простейшем рукотворном варианте «машина на батарейках» значительно дешевле своих промышленных аналогов и не требует инновационных технологий и материалов. Поэтому немало элементарных электромобилей ездит рядом с нами по дорогам под личиной обычных бензиновых моделей – просто мы об этом не знаем!

      «Электромобиль версии 1.0» – машина базового уровня, сделать которую может за полгода в гараже фактически любой рукастый мужик, умеющий ремонтировать автомобиль и обладающий начальными знаниями в электротехнике. Цель этой статьи, конечно же, не вручить читателю четкую инструкцию по применению, а дать, как сегодня модно говорить, «дорожную карту» понимания того, что электромобиль – это просто! Рассказал «Колесам» об этом один из самых авторитетных российских электромобилистов-самодельщиков Игорь Корхов, администратор крупнейшего тематического форума electrotransport.ru, успешно строивший законченные конструкции собственных электромобилей, а в данный момент ездящий на модернизированой Lada Ellada.

      Кузов

      Из чего состоит электромобиль начального уровня, который несложно построить на гаражном «стапеле»? Кузов от машины-донора с рулевым управлением, подвеской, трансмиссией и тормозами, электродвигатель постоянного тока, агрегатированный со штатной ручной КПП, пакет батарей с контроллером, педаль акселератора, от которой контроллер получает сигнал и ряд вспомогательных узлов, которые можно даже привносить в конструкцию не сразу, а позже – после первых пробных выездов, коих с таким нетерпением ждет душа гаражного инженера…

      В качестве кузовного донора, как правило, берут переднеприводную машину, чтобы не терять энергию на трение в крестовинах кардана и гипоидной передаче заднего моста. Стараются найти машинку полегче, в идеале до 600–700 килограммов, хотя это не всегда удается – большинство авто избыточно тяжелы с точки зрения постройки электромобиля. В свое время весьма популярна среди гаражных электромобильщиков была Таврия – кузов легкий и отменная «катучесть» – на ровной дороге можно было буквально пальцем толкать! Но Таврии почти все, увы, сгнили уже. Популярны Golf-ы первого–второго поколения, Daihatsu Mira и тому подобные небольшие машинки. «Катучесть» стараются увеличивать за счет особых шин – так называемых «зеленых»: узких и допускающих давление 2,7 и более атмосфер для устранения потерь на деформацию резины.

      1

      2

      3

      Двигатель

      Я видел, как на машине со снятым двигателем к первичному валу ручной КПП подключали мощный шуруповерт, выводили в салон управление его кнопкой включения и фактически получали за полчаса электромобиль! Да, курьезный, да, едущий не быстрее пяти километров в час, но, в сущности, неплохо демонстрирующий простоту и работоспособность конструкции «варианта 1.0»! Все это, разумеется, из области «механики шутят», но принцип, в общем, сохраняется.

      Самыми распространенными двигателями для самоделок начального уровня были и по-прежнему являются тяговые моторы ДС-3.6 от болгарских вилочных складских электропогрузчиков типа «Балканкар EB-687». Это двигатели последовательного возбуждения, питающиеся постоянным током с напряжением 80 вольт, мощностью 3,6 киловатта. Выглядит такой мотор, как цилиндрический бочонок, весит 66 килограммов. Это далеко не самый лучший по характеристикам массы и экономичности мотор, но он легкодоступен и популярен у начинающих конструкторов электромобилей. Приобрести такой «движок» можно в меру своего везения – кому-то он перепадет за спасибо, кто-то найдет за 5–10 тысяч рублей. В принципе, такая стоимость оправдана – мотор не скоростной, но имеет великолепный крутящий момент, вытягивает на любую горку даже на третьей передаче, прост в монтаже, неприхотлив.

      4

      5

      6

      Трансмиссия

      В «Варианте 1.0» не встретишь мотор-колес и прочих прогрессивных электромобильных «нанотехнологий». Делается, как проще, а проще всего срастить электродвигатель с уже существующей на автомобиле-доноре трансмиссией – ручной КПП с главной передачей и дифференциалом, через ШРУСы переднего привода со ступицами и передними колесами. — Собственно, корзина и диск сцепления, его привод (гидравлический или тросовый), да и сама левая педаль удаляются – это лишний вес, и они нам больше не нужны. – рассказывает Игорь Юрьевич, — Переключать скорости мы, правда, все же будем – но редко и без разъединения валов мотора и КПП – просто втыкая передачи рукояткой коробки. Включается нужная передача без сцепления совершенно спокойно как перед началом движения, так и на ходу: бросаешь газ, подводишь рукоятку КПП, синхронизаторы срабатывают – и едем дальше.

      Третью передачу используем для езды по городу, четвертую – по загородной трассе, вторую – по буеракам. Первая вообще никогда не используется, момент на колесах такой, что их просто прокручивает при легком касании акселератора!

      Чтобы установить электромотор под капот, нужны две основные «хендмейд»-детали: переходная плита и переходная втулка, с помощью которых электродвигатель соединяется с «родной» ручной коробкой передач автомобиля. Плита соединяет электромотор и КПП, а втулка – вал мотора и первичный вал КПП.

      Плита легко делается своими руками из толстолистовой стали или алюминия – достаточно наличия слесарных навыков среднего уровня, болгарки и дрели.

      7

      8

      9

      10

      Переходную втулку, соединяющую валы электромотора и КПП, также сделать несложно с помощью дяди Васи-токаря и сварки – с одной стороны втулка должна совмещаться с валом электродвигателя, а с другой к ней приваривается шлицевая часть, вырезанная из диска сцепления той коробки, с которой мы соединяем электромотор.

      11

      12

      13

      Батарея

      Батарея для электроавто — только литий-железо-фосфат, иных вариантов нет! Про стартерные свинцовые батареи, кажущиеся привлекательными для начала, «на попробовать», забудьте сразу и навсегда – они категорически непригодны, просто деньги на ветер. Несколько зарядок-разрядок – и аккумуляторы отправятся в пункт приема цветмета! Тяговые свинцовые батареи тоже долго не живут, поскольку при их массе емкость всегда будет недостаточной, а это означает избыточно большой потребляемый ток в расчете на одну батарею. При таких токах не держится и тяговый свинец. Так что исключительно «лиферы», хотя это и недешево.

      В свое время через свинец многие проходили – и я в том числе. Сейчас такие ошибки повторять никакого смысла нет. Стартерные батареи у меня начали помирать через пару месяцев, еле успел распродать за полцены, пока не потеряли емкость. Потом одно время использовал герметичные батареи от питания телекоммуникационных систем (источники бесперебойного питания сотовых вышек) – хватало на сезон, начинало расти внутреннее сопротивление… Поэтому, как только появился широкодоступный литий-феррум, все перешли на него. Лучшая удельная плотность энергии, умение отдавать и принимать большие токи, долговечность, морозостойкость. Но цены пока высоки, и батарея является самым дорогим узлом электромобиля – это нужно учитывать самодельщику…

      14

      15

      16

      Упрощенный расчет параметров и стоимости батареи выглядит так: предположим, что нам надо набрать 100-вольтовую батарею – на такое напряжение рассчитано довольно много моторов. Напряжение одной «лифер-банки»–- 3,3 вольта: значит, нам нужно соединить последовательно 30 банок. Но второй важный параметр батареи – емкость. Поскольку «банки» одинаковые, емкость одной = емкость всей батареи. «Банка» хорошего качества стоит примерно 1,5 доллара за 1 ампер-час, а 30-амперчасовая батарейка начального уровня обеспечит машине весом до тонны 25–30 километров запаса хода.

      Считаем:

      30 ампер-часов х $1,5 = $45 за одну банку $45 х 30 банок = $1350 $ за всю батарею

      В общем, батарея небюджетна, и это лишь емкость, пригодная для первых экспериментов – по-хорошему, её нужно увеличивать хотя бы вдвое.

      Заряжают аккумуляторы электромобиля чаще всего полусамодельными зарядными устройствами, сделанными на основе дешевых списанных блоков питания, насыщавших резервные аккумуляторы на базовых станциях сотовой связи – там они работают совместно с 48-вольтовыми свинцовыми батареями. Таких блоков нужно две штуки – их соединяют последовательно, внутренняя регулировка позволяет поднять напряжение каждого до 64 вольт и зарядить батареи для большинства распространенных электромоторов, используемых EV-самодельщиками.

      К слову, штатный 12-вольтовый аккумулятор, как правило, остается на своем месте – от него удобно питать разные штатные же потребители – звуковой сигнал, стеклоочистители, стеклоподъемники, «музыку», свет и т. п. Позже, в качестве одного из первых апгрейдов, его можно заменить на DC/DC конвертер ватт на триста, делающий 12 вольт из 100.

      Прочие узлы

      Собственно, помимо мотора, трансмиссии и батареи в простейшем электромобиле имеется еще ряд узлов – как необходимых, так и устанавливаемых по желанию. Категорически необходимым является, конечно же, контроллер управления двигателем. В простейшем варианте он может быть изготовлен самостоятельно на относительно недорогих и широко распространенных деталях, а датчиком педали газа послужит датчик угла поворота дроссельной заслонки от инжекторного ВАЗа. Можно купить контроллер у отечественных самодельщиков, выписать фабричный из Китая или заказать с eBay бэушный брендовый блок от Curtis – обойдется модуль в 250–300$.

      Дополнительных узлов, которые не являются обязательными для пробной (а то и вообще!) поездки – немало. Например, печка, из которой выкидывается жидкостный радиатор и устанавливается вместо него электрический ТЭН. Или, скажем, вакуумный насос для усилителя тормозов. Поскольку двигатель внутреннего сгорания на машине отсутствует, исчезает и разрежение впускного коллектора, необходимое для работы вакуумного усилителя тормозов. Поэтому многие самодельщики ставят электрические вспомогательные насосы ВУТ, заимствованные от машин типа Volvo XC90, Ford Kuga и т. п.

      Впрочем, все зависит от проекта – на легком электромобиле даже апгрейд тормозов делают далеко не все, поскольку роль «вакуумника» отчасти выполняет рекуперативное торможение двигателем, да и немало машин с завода не имели вакуумного усилителя в принципе, вполне неплохо тормозя. Без него, к примеру, производились не только небезызвестный ВАЗ-«копейка», но и Таврия, Ока в некоторые годы и так далее.

      17

      18

      19

      Цены и деньги

      Машина-донор, электромотор, контроллер – все это гибко варьируется и здесь можно «кроить» в меру хитрости и желаний. Можно купить автомобиль-донор тысяч за 100–150 в приличном состоянии по кузову, можно тысяч за 50 – но с необходимостью жестянки, сварки, малярки. Можно купить электродвигатель от престарелого болгарского погрузчика, а можно подержанный или новый американский мотор, спроектированный специально для электромобилей. Можно приобрести промышленный контроллер управления тягой двигателя, а можно спаять и самому, если есть навыки. То же самое касается и всего остального, кроме батареи. Тут особенно «скроить» ничего не удастся: цены на новые литий-феррум банки везде приблизительно одинаковые, вопрос в емкости. Хорошая 80–100-вольтовая батарея на приблизительно сто километров пробега обойдется по сегодняшним деньгам в 4–5 тысяч долларов. Можно, конечно, начать с малоемкого аккумулятора с перспективой наращивания (ведь даже короткая первая поездка воодушевляет и дает понимание, что трудишься не зря!), но надо понимать, что маленькую емкость нужно как можно скорее увеличивать, поскольку её недостаток ведет к повышению тока отдачи от каждой отдельной банки вплоть до опасных ударных величин, укорачивающих им жизнь… Пока будешь рассусоливать с покупкой второй половины, умрет первая.

      Так выгодно ли строить электромобиль? Даже опытный самодельщик и фактически гуру гаражного EV-строения Игорь Корхов считает, что на первом месте тут все же хобби, а «обмануть систему» можно лишь весьма условно — это будет граничить с самообманом. Дело в том, что конечный результат нельзя оценивать чисто по стоимости пройденного километра, как многим кажется – приходится брать в расчет и комфорт, и функциональность, и безопасность машины, и просто ощущение от того, чем владеешь. Вот, допустим, новая бензиновая Лада Гранта — стоит она от 360 тыс. рублей, что приблизительно равняется 5 500 $. Самый бюджетный электромобиль на базе какого-нибудь VW Golf ранних поколений обойдется в столько же по комплектующим – плюс время, просиженное на тематических форумах, и вложенный собственный труд. В результате на одной чаше весов – пусть и отечественный, но пахнущий новизной и беспроблемный автомобиль на гарантии, а на другой – немолодой и внешне потрепанный «электросамопал» в стадии бесконечной доделки, без возможности дозаправки топливом в пути, в первое время (а то и навсегда) без кондиционера, усилителя тормозов и тому подобного.

      Ну или, скажем, следующая планка — Hyundai Solaris. Новым он стоит от 600 000 рублей, что составляет около 9 200 $. Подобную же сумму придется затратить, если строить электромобиль на базе более-менее свежего кузова иномарки, который прилично выглядит снаружи и имеет не убитый салон, купив к этому кузову хороший американский электромотор, надежный фирменный контроллер Curtis и набрав емкую батарею. Однако на выходе – в общем-то, почти то же самое, что и в первом случае… У Соляриса в козырях максимальная скорость и динамика, возможность пополнять запас топлива повсеместно, а не только в личном гараже, где есть розетка, все преимущества новой и надежной машины с массой функциональных удобств, гарантии и прочее. Самоделка же, пусть и более приличная внутри и снаружи, остается самоделкой – машиной с существенными ограничениями по дальности пробега и возможности заправки, вечным конструктором, тренажером для рук и ума.

      Выводы

      С точки зрения приложения рук и ума для человека, любящего автомобили и технологии, постройка электромашины, безусловно, оправдана! Хобби это, конечно, затратное, но все познается в сравнении — причем, в сравнении не с олигархическими крайностями вроде коллекционирования яичек Фаберже, а со вполне распространенными и массовыми техническими прикладными увлечениями. Скажем, любителю рыбалки средненькая надувная лодчонка с подвесным двигателем известной марки сил эдак в десять выльется как минимум в две трети простейшего электромобиля.

      Хороший квадрокоптер с камерой стоит не меньше. На этом фоне постройка электромобиля ничуть не выделяется – нормальная такая мужская забава…

      Не меньшая привлекательность постройки электромобиля «Версии 1.0» в том, что результат достижим для многих, а не только для избранных — не надо быть «инженером 80-го уровня», чтобы сочленить электродвигатель с КПП, проложить силовую и управляющую проводку и разместить в багажнике батареи. В простейшем варианте конструкции да с многочисленными советами отзывчивого электромобильного коммьюнити в интернете работа будет приятной и почти наверняка успешной.

      Однако, пока не подешевели эффективные батареи и не распространились недорогие комплекты тяговых моторов и контроллеров, как это произошло с китами для электровелосипедов, электромобиль гаражной постройки в отношении стоимости эксплуатации вряд ли будет серьезным конкурентом бюджетным бензиновым авто и тем более – газифицированным машинам… В случае стремления к экономии вложиться в установку пропанового газового оборудования – проще и выгоднее…

      Фото любезно предоставил американский самодельщик Брюс, тщательно документировавший все этапы постройки в домашних условиях своего электромобиля на базе пикапа-хэтчбека Suzuki Mighty Boy 1985 года.

      Двигатель электромобиля, гибридного авто

      Электродвигатель

      Электродвигатель (тяговый электромотор, двигатель на электротяге) – мотор, который устанавливается на электротранспорт и гибридные автомобили. У электромобилей электродвигатель – единственный двигатель. У гибридных автомобилей электродвигатель работает в тандеме с двигателем внутреннего сгорания. В зависимости от выбранного режима работы и схемы автомобиля включается электромотор, бензиновый двигатель или два двигателя одновременно.

      По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin.

      Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

      Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

      На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

      На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

      Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

      Принцип работы

      Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

      Как работает традиционный электромотор?

      Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

      Схема.jpg

      Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

      Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

      Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.

      Электрокар.jpg

      Устройство

      Как устроен двигатель электромобиля?

      При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

      1. Ротор – это вращающийся компонент двигателя.
      2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

      Ротор

      Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.

      • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
      • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
      • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

      Статор (индуктор)

      Статор состоит из станины, сердечника и обмотки:

      • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
      • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
      • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

      Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:

      • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
      • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
      • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).

      Асинхронные и синхронные двигатели

      Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

      Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

      Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

      Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

      Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

      Двигатель-колесо

      Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

      Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

      У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

      Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

      двигатель колесо.jpg

      Преимущества и недостатки электродвигателей

      Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

      Преимущества

      • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
      • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
      • Высокий КПД. У машин с электродвигателями он достигает 95 %.
      • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
      • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
      • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
      • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
      • Малый уровень шума.
      • В большинстве случаев для мотора не требуется принудительное охлаждение.
      • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

      Недостатки

      Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

      Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

      В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

      Устройство электромобиля

      Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:

      • Аккумуляторная батарея.
      • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
      • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
      • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
      • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
      • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

      тяговые батареи

      Аккумуляторная батарея

      Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

      При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
      Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

      Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
      Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

      Устройство и особенности гибридных систем

      Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

      Гибридная система.jpg

      Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

      • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.
      • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.
      • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

      Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

      При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

      • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
      • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
      • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
      • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

      Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

      Перспективы применения электродвигателей в автомобилях

      Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

      Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

      На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

      Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

      Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

      Источник https://brutals.ru/hobbi/transport/dvigateli-dlya-elektromobilya-kak-ystroeny-i-princip-ih-raboty/

      Источник https://www.kolesa.ru/article/elektromobil-svoimi-rukami-kak-zachem-i-skolko-eto-stoit

      Источник https://pro-sensys.com/info/articles/obzornye-stati/dvigatel-elektromobilya/

      Читать статью  Зачем мыть двигатель автомобиля: рассматриваем процедуру со всех сторон
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: